Evaluating digital elevation models for glaciologic applications: An example from Nevado Coropuna, Peruvian Andes

نویسندگان

  • Adina E. Racoviteanu
  • William F. Manley
  • Yves Arnaud
  • Mark W. Williams
چکیده

This paper evaluates the suitability of readily available elevation data derived from recent sensors – the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Shuttle Radar Topography Mission (SRTM) – for glaciological applications. The study area is Nevado Coropuna (6426 m), situated in Cordillera Ampato of Southern Peru. The glaciated area was 82.6 km in 1962, based on aerial photography. We estimate the glacier area to be ca. 60.8 km in 2000, based on analysis of the ASTER L1B scene. We used two 1:50,000 topographic maps constructed from 1955 aerial photography to create a digital elevation model with 30 m resolution, which we used as a reference dataset. Of the various interpolation techniques examined, the TOPOGRID algorithm was found to be superior to other techniques, and yielded a DEM with a vertical accuracy of ±14.7 m. The 1955 DEM was compared to the SRTM DEM (2000) and ASTER DEM (2001) on a cell-by-cell basis. Steps included: validating the DEM's against field GPS survey points on rock areas; visualization techniques such as shaded relief and contour maps; quantifying errors (bias) in each DEM; correlating vertical differences between various DEM's with topographic characteristics (elevation, slope and aspect) and subtracting DEM elevations on a cell-by-cell basis. The RMS error of the SRTM DEM with respect to GPS points on non-glaciated areas was 23 m. The ASTER DEM had a RMS error of 61 m with respect to GPS points and displayed 200–300 m horizontal offsets and elevation ‘spikes’ on the glaciated area when compared to the DEM from topographic data. Cell-by-cell comparison of SRTM and ASTER-derived elevations with topographic data showed ablation at the toes of the glaciers (−25 m to −75 m surface lowering) and an apparent thickening at the summits. The mean altitude difference on glaciated area (SRTM minus topographic DEM) was −5 m, pointing towards a lowering of the glacier surface during the period 1955–2000. Spurious values on the glacier surface in the ASTER DEM affected the analysis and thus prevented us from quantifying the glacier changes based on the ASTER data. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale assessment of spatial precipitation variability over complex mountain terrain using a high-resolution spatiotemporal wavelet reconstruction method

Studying precipitation variability in the Peruvian Andes is a challenge given the high topographic variability and the scarcity of weather stations. Yet previous research has shown that a near-linear relationship exists between precipitation and vegetation in the semiarid central Andes. We exploit this relationship by developing a new, spatially highly resolved spatiotemporal precipitation reco...

متن کامل

Finding the Relationship Between Elevation and Isotopic Compositions of Stream Waters in the Peruvian Andes

The Peruvian Andes is a prime example of highly-elevated topography generated by oceanic plate subduction. As a result, several studies have been made to further understand the formation of the Andean Mountain Range, but as indicated by previous studies (Schildgen et al, 2007), researchers are still unable to ascertain the of the magnitude of the uplift solely based on structural history due to...

متن کامل

Effects of Digital Elevation Models (DEM) Spatial Resolution on Hydrological Simulation

Digital Elevation Model is one of the most important data for watershed modeling whit hydrological models that it has a significant impact on hydrological processes simulation. Several studies by the Soil and Water Assessment Tool (SWAT) as useful Tool have indicated that the simulation results of this model is very sensitive to the quality of topographic data. The aim of this study is evaluati...

متن کامل

Effect of digital elevation model’s resolution in producing flood hazard maps

Flooding is one of the most devastating natural disasters occurring annually in the Philippines. A call for a solution for this malady is very challenging as well as crucial to be addressed. Mapping flood hazard is an effective tool in determining the extent and depth of floods associated with hazard level in specified areas that need to be prioritized during flood occurrences. Precedent to the...

متن کامل

Evaluating optimized digital elevation precipitation model using IDW method (Case study: Jam & Riz Watershed of Assaloyeh, Iran)

A watershed management program is usually based on the results of watershed modeling. Accurate modeling results are decided by the appropriate parameters and input data. Precipitation is the most important input for watershed modeling. Precipitation characteristics usually exhibit significant spatial variation, even within small watersheds. Therefore, properly describing the spatial variation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007